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ABSTRACT 
Consider the Turing degrees of differences of recursively enumerable sets (the 
d-r.e, degrees). We show that there is a properly d-r.e, degree (a d-r.e, degree 
that is not r.e.) between any two comparable r.e. degrees, and that given a high 
r.e. degree h, every nonrecursive d-r.e, degree ~ h cups to h by a low d-r.e. 
degree. 

A set A _ oJ is called d-r.e, if there are recursively enumerable (r.e.) sets 

AI, A2 such that A = A I - A 2 .  A Turing degree is called a d-r.e, degree if it 

contains a d-r.e, set; it is called properly d-r.e, if it is d-r.e, but not r.e. (contains 

no r.e. set). 

Cooper (unpublished) showed that properly d-r.e, degrees do exist, while 

Lachlan (unpublished) showed that for any d-r.e, degree d > 0 there is an r.e. 

degree a such that 0 < a =_< d. These definitions and results easily generalise to 

n-r.e, degrees. A Turing degree is called n-r.e, if it contains an n-r.e, set where 

r.e. sets are called l-r.e, and D is (n + 1)-r.e. iff D = D~ - D2 for Di r.e., D2 

n-r.e. Hay and Lerman [8] have generalised the above result to show that: 

(1) For all k, n > 0, given any n-r.e, degree a > 0 there exists a k-r.e, degree 

b such that 0 < b < a; and 
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(2) For all n, p such that n > p > 1, there exist n-r.e, degrees a < b such that 

there is no p-r.e, degree c between them. 

Further results on the structure of the d-r.e, degrees appear in Arslanov 

[2, 3]. For example, it is shown there that every d-r.e, degree d > 0 can be 

cupped to 0' in the d-r.e, degrees (i.e. there is a d-r.e, degree a < 0' such that 

d U a = 0'). Arslanov also proves that for each r.e. degree a < 0' there exists a 

properly d-r.e, degree b such that a < b < 0'. 

We extend these results as follows: 
(1) (Weak Density) Given r.e. degrees a < b there exists a properly d-r.e. 

degree c such that a < e < b; and 
(2) (Cupping) Given a d-r.e, degree h > 0 and a high r.e. degree h > b there 

exists a low d-r.e, degree a such that b U a = h. (Here "d-r.e." can be replaced 

by "n-r.e."). 
These results compare with known results about the r.e. case, e.g. (1) with the 

Sacks Density Theorem (that the r.e. degrees form a dense partial order). (2) 

contrasts with the result by Yates and Cooper [4] that there exists an r.e. degree 

a with 0 < a < 0' such that no r.e. degree b < 0' cups a to 0', and also with 

Ambos-Spies, Jockusch, Shore, Soare [ 1] who showed that the property of low 
cuppability to 0' in the r.e. degrees defines a strong filter in the r.e. degrees. 

Downey [6] has recently shown that the Nondiamond Theorem fails for the 
d-r.e, degrees; thus there is a nonrecursive incomplete d-r.e, degree d that can 
be complemented in the d-r.e, degrees (i.e. there is a d-r.e, degree e such that 
d n e = 0 and d U e--0 ' ) .  It is easy to see that not every nonrecursive 

incomplete d-r.e, degree can be complemented. 

NOTATION. Our notation generally follows Soare [11]; thus sets will be 

identified with their characteristic functions. One exception is worth mention- 
ing: We shall use V t x  in the usual way as V restricted to elements < x ;  

however, when we consider the join of two sets 

V ~  W-" (2x I x ~  V} U {2x + 1 I x ~  W} 

then (V(t) W) t x will denote (V t x ) ~ ( W  ~ x). We hope the context will 

resolve any ambiguity. As a convention, we assume that all functionals ~ given 

by the "opponent" have use ~0,(x) increasing in x and nondecreasing in s. 

w Weak density 

In this section we show that between any two r.e. degrees there is a properly 
d-r.e, degree. The proof of this will use an infinite injury argument, involving a 
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tree construction. The reader is referred to Soare [11, Chapter XIV] for the 

background on these constructions. 

THEOREM I. Given r.e. sets U >r  V there is a d-r.e, set C of  properly d-r.e. 

degree such that U > r C > r F. 

PROOF. We construct r.e. setsAi, A2 < r  U. IfA =Al  - A 2  then C = V ~ A  

will be the desired set. 

To ensure that V ~ A  is not of  r.e. degree we satisfy for every i the 

requirement 
Ri" A =# O w, v W i =t 6 ~V~)A. 

Here {(Wi, Oi, Oi)}~o, is some enumeration of all possible triples ofr.e, sets W 

and partial recursive functionals O and ~.  

In satisfying Ri we shall construct functionals Fj ( j ~ o J )  and A with the 

intention that if R~ fails then U < r  V via some Fj, or A, contrary to our 

hypothesis. 

BAsic MODULE. We will choose a sequence of candidates (one for each 

"cycle" of the strategy), one of which will witness the failure of one or both of 

the propositions: 
(i) A = O w,, 

(ii) W~ = ~v~a. 

This will be sutticient for R~ to succeed. 

Let us first consider the requirement without the claim A < r  U and in the 
absence of any V-changes. (This is just the proof that there is a properly d-r.e. 

degree. There is only one cycle.) The strategy proceeds as follows: 
(1) Choose an unused candidate x for Ri. 
(2) Wait for a stage s such that for some least u and v 

0 = As(x) = OWJ, U(x) and Wi.~ t u = ~v~A) r v , , s  t u. 

(If this never happens then x is a witness to the success of R~ .) 

(3) Restrain A t v from other strategies from now on. 

(4) Put x into A. 

(5) Wait for a stage s' such that for some u' and v' 

1 =As,(x)=OW,~'rU'(x) and Wi,,t u'=d~Cv~a),'rv't u'. 

(If this never happens then again x is a witness to the success of R~. If it 

does happen then the change in OW,(x) between stages s and s' can only 
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be brought about by a change in W~ t u, which is irreversible since Wi is 
an r.e. set.) 

(6) Remove x from A and restrain A t v' from other strategies from now on. 
(Now x is a permanent  witness to the success of  Ri because 

�9 d)(yeA), r u = W~ r u :/: W~ t u, cl'~ r t u = -,,s 

i.e. proposition (ii) fails.) 

In the above, step (6) assumes, of  course, that V t v does not change after 
stage s. We shall show next how we can impose "indirect" restraint on V by 
threatening U <r  V via a functional 1". (This is essentially the proof  to 
Arslanov's Theorem, i.e. the case U--=r Z ' . )  We make infinitely many 
attempts to satisfy R~ as above by an to-sequence of "cycles", each cycle k 
proceeding as above but with the following step inserted after step (3): 

(3�89 Set FV(k) = Us(k) with use ~(k) = v, start cycle k + 1 simultaneously, 
wait for U(k) to change, then stop the cycles k' > k and proceed. 

Whenever some cycle sees a V t v-change after stage s, it will kill the cycles 
k '  > k and go back to step (2). (Notice that F, if defined for k' > k, becomes 
undefined through the V-change.) 

There are now three possibilities: 
(A) Eventually each cycle k gets stuck at step 3�89 waiting for a U-change. 

Then F v = U, contrary to hypothesis. 
(B) Some (least) cycle ko gets stuck forever at some other step. Then we were 

successful in restraining V and satisfy R~ through cycle k0 as before. 
(C) Some (least) cycle k0 gets infinitely many V-changes after step (2). Then 

OS ~A or 0 w, is partial, and Ri is again satisfied by cycle k0. 
Finally, we have to ensure A _-< r U through a permitting argument. So x has 

to be permitted by U into A at step (4) and out of A at step (6). The former is 
already given by the U(k)-change, the latter has to be built into the strategy (by 
asking for permission j many times for larger and larger j). 

We thus arrive at a basic module for the R~-strategy consisting of  cycles (j, k) 
(for j ,  k ~to) .  Cycle (0, 0) starts first, and each cycle (j, k) can start cycles 
(j, k + 1) or (j + 1, 0) and stop, or cancel, cycles (j ' ,  k') for (j, k) < (j ' ,  k') (in 
the lexicographical ordering). Each cycle (j, k) can define Fy(k) and Av(j). At 
each stage, the least cycle that can act will do so. 

A cycle (j, k) now proceeds as follows: 
(1) Choose an unused candidate x greater than any number  ment ioned thus 

far in the construction. 
(2) Wait for a stage s~ such that for some least u and v 
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,~v~A), rv ~ = W;,s ' Oiw, cr = 0 and .~-,~,, , , u u. 

(3) Restrain A ~v from other strategies from now on. 
(4) Set Fy(k) = Us,(k) with use 7j(k) = v and start cycle (j, k + 1) simulta- 

neously. 
(5) Wait for V ~ v or U(k) to change. 

If  V tv  changes first then cancel cycles ( j ' , k ' ) > ( j , k ) ,  drop the 
A-restraint of cycle (j, k) to 0, and go back to step (2). 

If U(k) changes first then stop cycles (j ' ,  k') > (j, k) and proceed to 

step (6). 
(6) Put x into A. 
(7) Wait for a stage s2 such that for some u'  and v' 

w tu' m(v~A), tv'~ U'----- l'Vis2~ U'. Oi,~'~ ( x ) =  1 and "*',.~2 2 ' 

(8) Restrain A ~v' from other strategies from now on. 
(9) Set Av(j) = Us2(J) with use g(j) = v' and start cycle U' + 1, 0) simulta- 

neously. 
(10) Wait for V rv' or U(j) to change. 

If V rv' changes first then cancel cycles (j ' ,  k') >_- (3 + 1, 0), drop the 
A-restraint of cycle (j, k) to v, and go back to step (7). 

If  U(j) changes first then stop cycles (j ' ,  k') > (j + 1, 0) and proceed 
to step (11). 

(11) Remove x from A. 
(12) Wait for V ~ v §  Vs, rv or V~v'  4: Vs2~v'. Proceed to step (13) or (14), 

respectively. 
(13) Reset FV(k) = U(k), cancel cycles (j ' ,  k') > (j, k), start cycle (j, k + 1), 

and halt. 
(14) Reset Av(j) = U(j), cancel cycles ( j ' , k ' ) > ( j +  1,0), start cycle 

(j + 1, 0), and halt. 
Notice again that whenever a cycle (j, k) is started, any previous version of  it 

has been cancelled and its functionals have become undefined through V- 
changes. Therefore, Fj and A are defined consistently. 

The basic module now has four possible outcomes: 
(A) There is a stage s after which no cycle acts. Then some cycle (J0, ko) 

eventually waits at step (2), (7), or (12) forever. Thus we win requirement Ri as 

before. 
(B) Some cycle (Jo, k0) acts infinitely often but no cycle < (Jo, k0) does so. 

Then it goes from step (5) to step (2), or from step (10) to step (7), infinitely 
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often. Thus ~i or Oi is partial. Notice that the overall restraint of all cycles has 
finite liminf. 

(C) There is a j0 and there are stages sj (j <J0) and tk (k~og) such that no 
cycle (j, k) acts after stage sj and such that cycle (J0, k) does not act after stage 
tk; but there is no stage s such that no cycle (J0, k) acts after stage s. CRow j0 
acts infinitely but rowsj  <J0 act finitely.") Then every cycle (J0, k) eventually 
waits at step 5 or 13 forever, and together these show U < r  Vvia Fj0 contrary to 
hypothesis. 

(D) There are stages sj (j E 09) such that no cycle (j, k) acts after stage sj; but 
there are infinitely many stages at which some cycle acts. ("Every row acts 
finitely.") Then for every j there is a cycle (j, kj) that eventually waits at step 
(10) or (14) forever, and together these show U < r  V via A contrary to 
hypothesis. 

Only outcomes (A) and (B) need to be put on the priority tree since the other 
two contradict the hypothesis of the theorem. We will order the former in 
order type co 2 + 1, with (j, k) (in lexicographical ordering) denoting outcome 
(B) with that cycle, and with the rightmost outcomefin denoting outcome (A). 

We visualize the action of~ cycle in Fig. 1. A cycle starts in state init and, 
following the arrows, proceeds to the next state (denoted by a circle) every time 
it is allowed to do so. Along the way, it will execute instructions (in boxes) and 
make decisions (in diamonds). At times when U changes, a cycle may directly 
proceed to Uchangel or Uchange2 and on to setup2 or Vchange3, respectively, 
to make the direct permitting of A below U work. 

The instructions in the flow chart are to be interpreted as follows: After state 
init, x is picked bigger than any number  mentioned previously in the construc- 
tion. (This automatically ensures that restraints are respected by strategies of 
lower priority.) The parameters x, r, sl, s2, u, v, u', v' are different for each 
cycle and roughly denote the candidate for Ri, the A-restraint imposed, the 
stages at which the setups are first found, and the uses for the setups, 
respectively. A cycle is started by letting it go from init to setup 1. A cycle is 
stopped by putting it into init and by setting its restraint is 0. A cycle being 
cancelled denotes that furthermore its part of the functionals has become 
undefined and that it could be started again. 

A strategy is initialised by cancelling all its cycles and starting cycle (0, 0). A 
strategy acts by letting its least cycle act (go to a different state) that can do so 
and that is not in state init (if there is such a cycle). The restraint of a strategy is 
the maximum of the A- restraints of all its cycles. 

CONSTRUCTION. Let A = {(j, k) l(j, k)eo  X co} u {fin} be the set of 
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outcomes, ordered lexicographically with fin rightmost. Let T = A <~ be the 

tree of strategies. A strategy a ~  T of length i works on requirement Ri, 

assuming outcome a(j)  of  strategies a t j  (j < i). Any parameter, once defined, 

retains that value until redefined; a functional remains defined on an argument 
until the oracle changes on the use. 

At stage 0, all parameters are set to 0 or ~ ;  all functionals are completely 
undefined; all strategies are initialised. 

At each stage s > 0, we first find the leftmost strategy a E T that has a (least) 

cycle (j, k) in state Vchangel or Vchange2 for which U(k) ~ Us,(k) or U(j) 

Us2(J), respectively, is satisfied. 

If there is such a then we let cycle (j, k) go from Uchangel or Uchange2, 
respectively, to the next state, and we initialise all strategies fl > a ^(j, k). 

In either case, we now proceed in substages t < s. At each substage t, a 

strategy a of length t is eligible to act. Once a has acted we determine its 

outcome o to be (j, k) if this cycle of a has acted, and fin if none has. We 
initialise all strategies fl >L a ^o and let ~ ^o be eligible to act at the next 

substage (if cycle (j, k) went from state Vchangel or Vchange2 to setup1 or 

setup2, respectively) and o~ ̂ fin otherwise. (This is because the restraint of  cycle 
(j, k) is lowest only at that point.) 

VERIFICATION. Let the true path f b e  the path through T defined induc- 

tively by f(i)  = o where ( f t  i) ^o is the leftmost successor o f f  r i eligible to act 
infinitely often. Let the correct part of  the true path fo = (3 {a C f [ a initialised 
finitely often}. We shall prove that this is only a finite initial segment o f f i f f  

U < r V .  

INJURY LEMMA. The restraint of  every strategy a C_ fo is injured at most 
finitely often. 

PROOF. Only a strategy p < a can have a candidate small enough to injure 

a. But every time/~ injures a (in the first part of  a stage s), a is initialised. 

Therefore the lemma holds by the definition off0. 

PERMITTING LEMMA. A <-~T U by direct permitting. 

PROOF. Suppose some strategy a changes A at x in the first part of  some 

stage s + 1. Since a did not do so at stage s, either Us t x § U,+l t x, or else a 
was not ready to change A at x. But in the latter case, by the construction, we 
also conclude U, t x  v~ Us+l ~x. Thus A < r  U. 

OUTCOME LEMMA. (i) I f  a C fo then a satisfies requirement Rl, I. 
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(ii) I f  a = fo then a shows U < r V, contrary to hypothesis. 

PROOF. (i) Let s' be the least stage such that f0 ~ (l~l + 1) is not initialised 
after stage s'. (This stage exists by the definition off0.) Then a is no longer 
injured by the way the construction is set up. 

First assume a ^ f in_  f0. Then some cycle (j, k) is eventually waiting in 
setupl, setup2, or Vchange3 forever (and every cycle > (j, k) is in init). Thus 
requirement Ri is satisfied. 

On the other hand, assume a ^(j, k) _ f0 for some (j, k). Let s" > s' be the 
least stage such that no cycle < (j, k) acts after stage s". Now cycle (j, k) is no 
longer stopped or cancelled, and it will work on a fixed candidate x from now 
on. Since a ^(j, k) is not initialised after stage s' we conclude that As(x) = A (x) 

for all s > s". Then after stage s", cycle (j, k) keeps going between Vchangel, 

or Vchange2, and setupl, or setup2, respectively. Thus ~i is partial, and again 
R~ is satisfied. 

(ii) Let s' be the least stage such that a is not initialised after stage s'. 

First assume that infinitely often some cycle (j, k) < (J0, ko) acts for (Jo, ko) 
some fixed (least) cycle. For the sake of a contradiction, assume that ko > 0. Fix 
a stage s" >= s' such that no cycle (J0, k) (for k < k0) acts after stage s'. Then 
infinitely often some cycle (j, k) < (J0, 0) acts, contradicting the choice ofs" .  

For all k, let Vk >---- S' be the last stage at which cycle (Jo - l, k) acts. Since 
cycle (J0, 0) is cancelled infinitely often, each cycle ( J0 -  1, k) waits at 
Vchangel or haltl forever after stage Vk. But then Fjo V_ ~(k)= U(k) for all k. 
(Notice that the definitions of 1-'jov_l(k) by all previous actions of cycle 
(Jo - l, k) have become undefined through V-changes.) 

On the other hand, assume no cycle (/', k) acts infinitely often. For all k, let 
wj >_- s '  be the last stage at which any cycle (j, k) acts. By the definition of wj, 
some cycle (j, k) waits at Vchange2 or halt2 forever after stage wj. But then 
AV(j) = U(j) for all j .  (Notice again that previous definitions of AV(j) have 
become undefined.) 

The above lemmas establish Theorem I. 

w Cupping 

It is known that there are r.e. degrees a > b > 0 such that b does not cup to a 
in the A~ i.e. there is no A~ c < a such that a = b tJ c (Cooper 
[5], Slaman and Steel [10]). In this part we show that a cannot be high, and we 
extend a result of Arslanov [2, 3]. 
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THEOREM II. Given r.e. sets V and H such that H is high and 

< r  V <=r H, there exists a low d-r.e, set A < r  H such that H ~ r  V ~ A .  

This implies a cupping theorem for all n-r.e, degrees (n >= 2): 

COROLLARY. Let h be a high r.e. degree and n >-_ 2. Then any n-r.e, degree 

w with 0 < w <= h cups to h by a low d-r.e, degree. 

PROOF. There is an r.e. degree v with 0 < v _-< w (see e.g. [7]). Now the 

degree from Theorem II cupping v to h will also do so for w. 

PROOF OF THEOREM II. We shall construct F to satisfy H - - F  v ~ .  We 

ensure A =< r H by permitting; and finally A < r  H since A will be low and H is 

high. 
We ensure A low by the usual lowness requirements: 

Ri : (  3 ~)[tl~,.~(i) ~ ] -~ tl~,~ (i) ~ 

BASIC MODULE. Let us first see how to satisfy Ri in the absence of high 
permitting but just ensuring H = F yea . (This is just the proof for H complete.) 

The requirement H = F v~A has absolute priority over the R~'s; whenever a 

number x enters H and FV*A(x) is defined, then F must be corrected at x by a 

change in V or A. A change in A, of course, may injure R~, so we shall first 

change A, force V to change (threatening to prove it recursive via a functional 
A) and then change A back to satisfy R,. We may need several attempts before 
we can force a V-change. 

The strategy thus consists of  cycles k (for k ~ t n )  and works with a fixed 
parameter b~. Cycle 0 will start first. Each cycle k proceeds as follows: 

(1) Wait for a stage s such that tl~.~(i) ~. 
(2) Restrain A t ~0(i) from other strategies from now on (to preserve tl~i (i) ~ ). 
(3) IfFV~A(bi) t o r  7(bi) (the u s e  ofI"V~A(bi) ) is greater than ~o(i) (the use of 

tl~ (i)) then halt (since numbers z < bi entering H will only cause finite 

injury). 

Otherwise put ~,(b~) - 1 into A (to destroy FV*A(b~) and force it to be 

redefined with a use > ~0~.s(i)). 

(4) Set A ( y ) =  V(y)  for y < 9's(b~) unless already defined (to try to force 
V t 7s(b,) to change). 

(5) Start cycle k + 1 (starting the next step to show V recursive via A). 
(6) Wait for V t 7~(b~) to change. 

(7) Cancel all other cycles, remove ~,,(b~) - 1 from A, and halt. (Now we are 

in the same situation as in the first case of step (3).) 
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There are now two possible outcomes: 
(A) Some cycle k eventually halts or waits forever at step (2). Then either 

<lff/(i) $ (if cycle k halts) or tI~u(i ) ~ for all stages t at which cycle k waits at 

step (2). 
(B) Every cycle eventually waits forever at step (6). Then V t ~,,(b~) (for this 

)'~(bi)) never changes once a cycle has reached step (6). Then F v~A will he 
undefined but ),~(b~) tends to infinity, and thus Vis recursive via A, contrary to 

hypothesis. 
We now need to include the permitting of A below H. First, when some y is 

removed from A then V t (y + 1) has changed. Since V =<rH, H c a n  compute 
which elements are removed from A in the construction above. So we only 
have to permit numbers into A. We use a version of Martin permitting below 

high r.e. degrees as in Robinson [9]: 
Without loss of generality, we may assume that H is e-dominant, namely, the 

computation function cn defined by 

cn(y) = (ps)[H~ t y = H t y] 

dominates every total recursive function f ,  i.e. 

(a.e. y)[cn(y) > f(y)]. 

The final version of the basic module for R~ thus consists of cycles (j, k) (for 
j > b;; k E oJ; where b~ is a fixed parameter). Cycle (bi, 0) starts first, and each 
cycle (j, k) can start cycles (j + 1, 0) or (j, k + 1) and cancel other cycles. 

Recursive functions Aj (for j _>- bi) and fwi l l  be constructed by the cycles 
(j, k) (for fixed j ,  and all j jointly, respectively), showing Vrecursive via some 
Aj o r f n o t  dominated by cH, if R~ cannot be satisfied. 

A cycle (j, k) then proceeds as follows: 
(1) Wait for a stage s such that <~i.'s(i) ~. 
(2) Restrain A t ~( i )  from other strategies from now on. 
(3) If FV*A(j)t or ~,(j)> ~( i )  then cancel all other cycles and halt. Other- 

wise set f (x)  = s for the least x at w h i c h f  is undefined (to force H t 7(J) 
to change, threatening f i s  not dominated by cM), start cycle (j + 1, 0), 

and wait for H ~ ~,(j) to change. 
(4) Cancel all cycles (j ' ,  k') f o r j '  >j,  put 7s(J) - 1 into A, set Aj(y) = V(y) 

for y < ~,s(j) (unless already defined), start cycle (j, k + 1), and wait for 

V t ~,s(j) :g V~ t ~'s(J) to change. 
(5) Cancel all other cycles, remove y,(j) - 1 from A, and halt. 
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(Here, in step (4), cancelling cycles (j ' ,  k') fo r j '  > j  includes discarding the 
functions Aj, fo r j '  > j  and starting their definition from scratch.) 

Since the requirement H = F v~A has highest priority there may be injury to 
any cycles (j, k) (for fixed j)  whenever H r (j + 1) changes. In this case we 
cancel all these cycles and restart the least one of them if it had been active. 
The crucial point here is that we shall not discard f, and we shall prove below 
that this will cause only finite injury if cn dominates f.  

The basic module now has three possible outcomes: 
(A) After some stage So, no cycle acts. Then some cycle (j, k) has halted or is 

waiting at step (1) forever. Thus tl~ (i) ~, or tl~.~(i) t for all s > So. 
(B) There is a (least) fixed j0 such that infinitely often some cycle (J0, k) acts. 

Then every cycle (J0, k) eventually is waiting at step (4). Thus FV~A(j0) t but 
~'s(J0) tends to infinity and therefore V = Ajo, contrary to hypothesis. 

(C) Infinitely often some cycle acts but for eachj  > b; there is a stage sj such 
that no cycle (j, k) acts after stage sj. Then infinitely many cycles wait at step 
(3), and each has found some y such that cn(y) < f ( y )  (since the 7(j)'s 
dominate the y's), contrary to hypothesis. 

Notice that only outcome (A) does not contradict the hypotheses of 
Theorem II, and that this outcome is finitary. We shall therefore be able to use 
a finite injury argument. 

We visualize the action of a cycle in Fig. 2. A cycle starts in state init and, 
following the arrows, proceeds to the next state (denoted by a circle) every time 
it is allowed to do so. Along the way, it will execute instructions (in boxes) and 
make decisions (in diamonds). 

The A-restraint that each cycle imposes is denoted by r (and is enforced 
automatically). A cycle (j, k) is started by letting it go from init to waitS; it is 
cancelled by putting it into init, setting its restraint to 0, and (if k = 0) 
discarding its function Aj. 

A strategy is initialised a t j  by cancelling all its cycles (j ' ,  k') (for j '  > j )  and 
starting cycle (f, 0) for f =  max(j, hi) (if cycle (f, 0) was not in state init). A 
strategy is initialised by initialising it at 0, setting bi bigger than any number 
mentioned before in the construction, and starting cycle (b~, 0). A strategy acts 
by letting its least cycle act (go to a different state) that can do so and that is not 
in state init. 

The restraint of a strategy is the maximum of the restraints of its cycles. 

CONSTRUCTION. Any parameter, once defined, retains that value until 
redefined. We have one strategy for each Ri acting as described above. 
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set f(z) = s' for x = [dom/I,] 

/ start cycle (j + 1, O) 

cancel all cycles (j', k') 
for j' > j, 

put %,(j) - 1 into A, 

s~t ~ , ( v )  = v(v) 

for Idom Aal < V < 7,,(j), 

start cycle (j, k + 1) 

~ cancel all other cycles, ~ 
remove 7, (j) 1 from A k / 

Fig. 2. Cycle (j', k) for Theorem II. 
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At stage 0, all parameters are set to 0 or ~ ,  and all Ri-strategies are 

initialised in sequence. 

Each stage s > 0 consists of three steps: 

First determine if there is a (least)j such that H(j) v ~ FV~A(J ) ~. If SO then 

put 7 ( J ) -  1 into A (so that FV~A(j) can be corrected) and initialise all 

Ri- strategies at j .  
Next find the least j such that FV~A(J ") t.  Set Fv~A(j) = H(j) .  Define its use 

to be the same as last time if since that time only V t 7(J) has changed but not 

A t ~,(j). Otherwise define the use to be more than twice as big as any number 

mentioned thus far in the construction. 

Finally, find the least i such that the R~-strategy can act. For this i (if it 

exists), let the R~-strategy act and initialise all Re-strategies (for i '>  i). 

VERIFICATION. 

INJURY LEMMA. NO R,-strategy injures any Re-strategy (for i' < i). 

PROOF. When the R~-strategy changes A at some y(j) then 7(J) >=J >= bi > 

any number the R~,-strategy worked on so far. 

PERMITTING LEMMA. A <r V~) H < r H  by direct permitting. 

PROOF. Any A-change at some x in the first step of the construction is 

permitted by a change in H ~ x (since 7 is increasing). Any A- change at some x 
by an Ri- strategy has to be permitted by a change in H t x or V t x, and H can 

compute the r.e. set V. 

OUTCOME LEMMA. Fix i E co and assume all Ri,-strategies act finitely often 
(for i' < i). 

(i) I f  the Ri-strategy acts finitely often then Ri is satisfied. 
(ii) I f  the Ri-strategy acts infinitely often then either V is recursive via some 

Aj, or f is total recursive and not dominated by ell, contrary to the e-dominance 
of  H. (In either case, a hypothesis of Theorem H fails.) 

PROOF. (i) Let t be a stage such that no Ri,-strategy (for i' <= i) acts after 

stage t. Let (j, k) be the cycle of the R~ - strategy that was started last. Let v >_- t 

be a stage such that H ~ (j + l) has settled down by stage v. Then after stage v, 

cycle (j, k) waits forever at waitr or has halted at winl or win2. In either case, 

Ri is satisfied. 
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(ii) Let t be a stage such that no R~,-strategy (for i' < i) acts after stage t. 
Then after stage t, the parameter b~ is fixed. 

We distinguish two cases: 
For some (least) fixed j0, there are infinitely many stages such that some cycle 

(/'0, k) of the R~-strategy acts. Let v>_-t be a stage such that H~(j0 + 1) has 
settled down by stage v. For each k ~ 09, let Sk >_-- V be the least stage such that 
cycle (J0, k) does not act after stage Sk. Then Ajo is never discarded after stage v, 
and cycle (Jo, k) waits at waitVforever  after stage Sk. Since the parameter ?s(Jo) 
tends to infinity by the construction, V is recursive via Fj0. 

On the other hand, assume that for every j >_- b~ there is a least stage sj > t 
such that no cycle (j, k) of the R~-strategy acts after stage sj and such 
that H t (j + 1) has settled down. Then for each j ,  some cycle (j, kj) will wait 
at waitH forever after stage sj, just having set f ( x j ) = s  t and having used 
parameter zj = 7s,(J). We shall show below that zj >= xj for all j >-_ bi. Thus 
H~, ~ z~ = H ~ zj (by the definition of st). Therefore f (xj)  = sj >-_ cn(zj) >= cn(xj). 
Since the Ri-strategy acts infinitely often, f is total and, by the above, not 
dominated by cn. 

It remains to show that zj >= xj for all j >= bi. Let tj =< s t be the last stage at 
which 7(3) was increased. At that stage zj > 2-max(I dom f l  ,J) >-- [dom f l  + 
j .  Now between stages tj and s t, cycles (j ' ,  k') (for j '  -_<j) can only go from 
wai t~  to waitH (else F becomes undefined by an A-change), and no cycle 
(j', k') (for j '  > k') can act at all. Thus at most j + 1 times cycles can act 
between stages tj and sj, extending dom f by at mos t j  + I values. Thus at stage 
st, zj >_- [dom f l  = xj as desired. 

CONVERGENCE LEMMA, I f  no R~-strategy acts infinitely often then F v~a is 
total, and H = F v~A. 

PROOF. If F zeA is total, it will also be correct by the first step of the 
construction. 

Assume F v ~  t j  has been defined permanently by stage t, and that after that 
stage no Ri-strategy acts (for i < j ) .  Let v < t + 1 be the last stage at which 
Fv~A(j) is defined. (Such a stage exists by the second step of the construction.) 
No R~-strategy (for i > j )  can change A below ~,(j') (since bi > j ) .  Thus F v~a 
will be defined at the end of stage t + 1, and its use will never again increase. 
Now, again by the second part of the construction, F v~A (j) will eventually be 
defined permanently. 

The above lemmas establish Theorem II. 
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